Methodology

Artificial Intelligence

Artificial Intelligence (AI) is a broad term that is used with increasing frequency across all industries, yet it remains nebulous and is often misused or mischaracterized in its applications.  In the simplest of definitions, any device that can perceive the environment around it and has the ability to take action in order to maximize its possibilities of success can be said to have at least a degree of Artificial Intelligence.

 

We see AI everywhere in our day-to-day lives, ranging from facial recognition software on our smartphones (with success defined unlocking your phone) to driver assistance features in our cars (with success being defined as avoiding hazards).

At its heart, Artificial Intelligence is math.  This math is brought to life in the machines in the world around us through computer code in a way that allows us to harness its power and direct it towards practical solutions.  The ability of these machines to learn is central to what makes technology intelligent.  Deciding what actions to take based on constantly changing data from the surrounding environment, rather than by selecting from a limited set of pre-defined alternatives, is what sets AI apart from simple machine automation.

Complete Intelligence uses an intelligent and constantly evolving analytic process that has increasing complexity and automation over time.  A key tenet of our platform is to have no human intervention in the analytic process, allowing the AI to function without imposition of bias, emotion or sentiment.

General Principles of AI

There are four general principles of AI that are critical for it to truly exhibit intelligence:

Sensing
This is a machine’s perception of the world around it and is achieved through the gathering of many different types of data. Receiving these data is the first step in allowing a machine to capture, identify, analyze and process its environment.
Comprehending
In order to be effective, an AI machine must be able to comprehend what it is sensing in order to use it effectively and drive for a successful outcome. As with sensing, comprehension can be as simple as pattern or trend recognition in a data series or as complex as multi-dimensional interactions between variables. Essentially, to comprehend is to grasp the relevance and meaning of data being sensed.
Acting
All of the data sensed and comprehension performed are of little use if an intelligent machine doesn’t have the ability to act on them. AI provides the ability for machines to take actions based on their comprehension and analysis of input data received. By creating machines with the ability to act we can unlock the true potential of technology.
Learning
The goal of AI is to create increasingly intelligent machines. As we’ve all experienced, intelligence can only grow through learning – improving on our mistakes and building on our successes. The same is true for intelligent machines. AI provides the ability for a machine to continuously optimize performance by learning from history and its actions.

Data Quality Matters

We’ve all heard the expression “garbage in, garbage out” and that’s especially true for AI. The comprehension, actions and learning performed by AI are only as good as the data that it senses. Unfortunately, the big data revolution of the past decade focused strongly on the quantity of the data amassed, rather than the quality of the data. Poor quality data leads to inaccurate and unreliable results and provides the AI with a warped view of the reality of the environment around it. For high-consequence decisions, this can lead to disastrous results.

At Complete Intelligence, a significant part of our process is dedicated to maximizing data quality so we can ensure a robust and reliable dataset. Our Global Cognitive System looks at over 15 billion datapoints related to global trade, economics and markets – and in amassing this information all source data pass through a multi-layer intelligent analysis, processing and validation procedure.

Evolution of Modern AI

The concept of AI has been around for decades, and its potential has been the stuff of science fiction.  As computational horsepower and cost-effectiveness that modern computing offers have grown, AI has now moved to the forefront and is putting us at the brink of a fourth industrial revolution.  In this, we will see the fusion of technologies and a blurring the lines between the physical and digital realms.

As noted, AI includes basic mathematical functions and as a result the term can be potentially misleading. Simplistic methodologies can be classified as AI, and while important, are only the foundation of what’s truly required for intelligent machines.

Machine learning, or ML, is a subset of AI builds on Basic AI in that it references the study of mathematical algorithms and statistical models used use perform a given task or function without the provision of specific instructions or actions. ML relies on its comprehension of data provided to recognize patterns and uses algorithms to construct predictive mathematical models. This allows a machine to make forecasts or generate decisions without being specifically programmed to do so.

Deep Learning, or DL, is centered on multi-phase, multi-layer approaches to optimize the ML algorithms used to interpret the machine’s environment and make accurate decisions. Multiple layers are each parameterized separately, and lower-level models used to generate predictions for higher-level models.

Reinforcement learning, or RL, is a further expansion of ML where an intelligent machine takes appropriate actions to maximize reward in a particular situation. RL creates an adversarial environment where multiple analytic methodologies exist in parallel. In this predictive arena, the optimal analytic methodology wins and receives a higher weighting within the iteration of analytic methodologies. As such, an intelligent machine using RL is bound to learn from its experience and constantly adjust its actions to achieve the best possible outcome.

Complete Intelligence Process – The Global Cognitive System

The Complete Intelligence Global Cognitive System (GCS) was developed using Basic AI in 2015, and subsequently moved to a ML environment in 2016. In 2018, we expanded our analytic processes to harness the power of Deep Learning. At present, we are moving forward into the area of Reinforcement Learning to further improve our predictive efficiency.

 

We begin our analytics with one of the world’s largest global trade models that looks at more than 1,400 different industries and over 100 reporting countries. This is combined with thousands of commodities, equity indices, currencies and economic indicators to create a comprehensive model.

 

Using a basket of key global indicators, we perform a proprietary multi-dimensional and multi-layered analysis to initiate our predictive engine. This is combined with Reinforcement Learning involving multiple analytic methodologies to examine specific assets, which include the following:

  • Commodities
  • Equities
  • Debt
  • Currencies
  • Customer-specific data, including:
    • Manufactured goods
    • Agricultural products
    • Energy related items

As new data are incorporated our process continually learns and grows, optimizing the analytic methodologies employed.

At Complete Intelligence, we are constantly working to enhance the analytic sophistication of our platform, continuing the evolutionary process that began with the adoption of AI and grows as technology barriers are broken.

Request A Demo
Try Complete Intelligence
Risk Free
15-Day Free-Trial
Gain Intelligence. Subscribe to the CI Weekly Newsletter.